Ch.6:

Work and energy are **scalars**!

(but CAN be positive or negative)

\[W = F_x \cdot x \]

\[W = \Delta E \]

Work done on an object = change in energy of the object

Total work = work on an object + work to overcome friction + ….other work

(or \(\Delta E \) of the obj) (or thermal energy)

Work can be positive or negative (since \(W = \Delta E \))

Energy of a system is conserved **IF there is no net external force** acting on the system

\[\begin{align*}
& \text{If there is no friction} \quad \text{initial TME} = \text{final TME} \\
& \text{If friction is present} \quad \text{initial TME} = \text{final TME} + \text{Work to overcome friction}
\end{align*} \]

\[KE = \frac{1}{2}mv^2 \]

\[PE = mgh \]

\[EPE = (\text{avg Force}) \cdot x = \frac{1}{2}kx^2 \]

Springs:

\[F = kx \quad \text{where “k” is the “spring constant”} \]

\[\Delta F = k\Delta x \quad \text{(Hooke’s Law)} \]

F vs. x graphs

\[\text{Slope} = k \]

\[\text{Area} = \text{work} = \text{change in EPE} \]

\[\text{(Area can be positive or negative)} \]

\[P = \frac{W}{t} = \frac{\Delta E}{t} \]

\[\Delta E = P \cdot t \quad \text{(joules or kWh)} \]

\[P = F \cdot v \quad \text{(where F and v point in the same direction)} \]

Inclined planes:

\[F_x = mgsin\theta \]

\[F_y = mgcos\theta \]

Force of friction = \(\mu F_N \)

==
Ch.7

Impulse, p, Δp, v, Δv, F are vectors!

\[p = mv \]

Impulse = \(F \cdot t = \Delta p \)

\[\Delta p = m \Delta v \]

only if mass is constant

Total momentum of a system is conserved IF there is no net external force acting on the system

\[\sum p_o = \sum p_f \]

Collisions:
- Collision forces are equal and opposite
- Impulse and \(\Delta p \) are equal and opposite
- Perfectly elastic: KE is conserved (\(p \) is conserved)
- Inelastic: KE will not be conserved (\(p \) is conserved)
- In between: KE will not be conserved (\(p \) is conserved)

 Explosions:
- \(p \) is conserved and KE increases

1-D collisions:
\[m_1v_1 + m_2v_2 + \ldots = m_1v_1' + m_2v_2' + \ldots \]

[for inelastic collisions this simplifies to: \(m_1v_1 + m_2v_2 + \ldots = (\text{total mass})v \)]

When two equal masses have a perfectly elastic collision, they trade velocities!

2-D collisions
- momentum is conserved for both the x components and the y components
- the total initial momentum vector is the same as the total final momentum vector
 (same magnitude, same angle, same x & y components)

For the AP exam in May:

F vs. t graphs
- \(Area = impulse = \Delta p \)
- (area can be positive or negative)

p vs. t graphs
- \(slope = \text{Force} \)